Skip to main content
GitHub for Mathematicians
Steven Clontz
Contents
Search Book
close
Search Results:
No results.
Dark Mode
Prev
Up
Next
\(\newcommand{\R}{\mathbb R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Abstract
Colophon
Acknowledgements
1
Intro to Git & GitHub
1.1
What Is Git?
1.2
What Is Git
Hub
?
1.3
G4M on
GitHub.com
2
Your First Repository
2.1
Making an Account
2.2
Creating the Repo
2.3
Editing README.md
2.4
Using
GitHub.dev
2.5
Commiting Your Work
2.6
Next steps
3
Writing and Running Code
3.1
Codespaces
3.2
Writing and Running Code
3.3
Managing Your Codespaces
3.4
Powering up your Codespce
3.5
Custom Codespaces
4
GitHub Pages
4.1
Creating a Simple Webpage
4.2
Using a Template
4.3
Customizing Your Site
4.3.1
Configuration
4.3.2
Photo
4.3.3
Pages
4.3.4
Posts
4.4
Previewing GitHub Pages
5
Collaborating with Others
5.1
Collaborators and Pull Requests
5.2
Undoing accidental commmits to
main
5.3
Forks
5.4
Handling Merge Conflicts
6
Jupyter Notebooks
6.1
Intro to Jupyter
6.2
GitHub’s Jupyter Codespace
6.3
Kernels
6.4
Cells
6.5
A sample notebook
6.6
Handling big datasets
6.7
Using R with Jupyter
7
Math Projects Powered by GitHub
7.1
PreTeXt authoring system
7.2
Creating a LaTeX Codespace
7.3
\(\pi\)
-Base Community Database of Topological Counterexamples
7.4
Lean Theorem Prover
7.5
code4math
7.6
PROSE Consortium
8
Macaulay 2
8.1
Creating a M2 Codespace
8.2
Basic M2 Commands
8.2.1
Arithmetic, Strings, and Lists
8.2.2
Functions, Apply, and Loops
8.2.3
Rings, Matrices, Ideals
8.2.4
Homological Algebra and Gröbner Bases
8.3
InvariantRings package
8.3.1
InvariantRing Library Demos
8.3.1.1
SL₂ Actions on C² and Variants
8.3.1.2
Diagonal Actions of Abelian Groups
8.3.1.3
Linearly Reductive Actions: Permutations and Binary Forms
8.3.1.4
Matrix Invariants and Conjugation Actions
8.3.1.5
Finite Group Actions: S₄ Example
9
Invariant Theory
9.1
Invariant Rings Theory
9.1.1
Finite Matrix Groups
9.1.2
Invariant Rings
9.1.3
Reynolds Operator
9.1.4
Nöether Degree Bound(NDB)
9.1.5
Hilbert Ideal
9.1.6
Presentations
9.1.7
Graph of Linear Actions
9.1.8
Subspace Arrangement Approach
9.1.9
Abelian GPS and Weight Matrices
Backmatter
A
Additional Reading
B
Additional Topics
B.1
GitHub Desktop
B.2
VS Code Application
B.3
Using the Terminal
C
Definitions and Notes Quick Ref
Colophon
Colophon
Colophon
This book was authored in PreTeXt.