Skip to main content
Github for math folks:
St. Olaf edition
Steven Clontz
Contents
Search Book
close
Search Results:
No results.
Dark Mode
Prev
Up
Next
\(\newcommand{\R}{\mathbb R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Abstract
Colophon
Acknowledgements
1
Intro to Git & GitHub
1.1
What Is Git?
1.2
What Is Git
Hub
?
1.3
G4M on
GitHub.com
2
Your First Repository
2.1
Making an Account
2.2
Creating the Repo
2.3
Editing README.md
2.4
Using
GitHub.dev
2.5
Commiting Your Work
2.6
Next steps
3
Writing and Running Code
3.1
Codespaces
3.2
Writing and Running Code
3.3
Managing Your Codespaces
3.4
Powering up your Codespce
3.5
Custom Codespaces
4
GitHub Pages
4.1
Creating a Simple Webpage
4.2
Using a Template
4.3
Customizing Your Site
4.3.1
Configuration
4.3.2
Photo
4.3.3
Pages
4.3.4
Posts
4.4
Previewing GitHub Pages
5
Copilot and Other AI Assistants
5.1
AI Assistant Options
5.2
Setup
5.3
Features
5.4
Things to Try
6
Collaborating with Others
6.1
Collaborators and Pull Requests
6.2
Undoing accidental commmits to
main
6.3
Forks
6.4
Handling Merge Conflicts
7
Jupyter Notebooks
7.1
Intro to Jupyter
7.2
Jupyter Notebooks on Google Colab
7.3
GitHub’s Jupyter Codespace
7.4
Kernels
7.5
Cells
7.6
A sample notebook
7.7
Handling big datasets
7.8
Using R with Jupyter
8
Math Projects Powered by GitHub
8.1
PreTeXt authoring system
8.2
Creating a LaTeX Codespace
8.3
\(\pi\)
-Base Community Database of Topological Counterexamples
8.4
Lean Theorem Prover
8.5
code4math
8.6
PROSE Consortium
9
Manim
9.1
What Is Manim?
9.2
Creating a Manim Codespace
9.3
Hello World!
9.4
More Animations
9.5
Additional Resources:
10
Macaulay 2
10.1
Creating a M2 Codespace
10.2
Basic M2 Commands
10.2.1
Arithmetic, Strings, and Lists
10.2.2
Functions, Apply, and Loops
10.2.3
Rings, Matrices, Ideals
10.2.4
Homological Algebra and Gröbner Bases
11
Invariant Theory
11.1
A concrete introduction to invariant rings
11.1.1
Finite Matrix Groups
11.1.2
Invariant Rings
11.1.3
Reynolds Operator
11.2
Degree bounds and algorithms
11.2.1
Noether Degree Bound
11.2.2
Hilbert Ideal
11.2.3
Presentations
11.2.4
Graph of Linear Actions
11.2.5
Subspace Arrangement Approach
11.3
Specialized algorithms
11.3.1
Abelian Groups and Weight Matrices
11.3.2
Permutation actions
11.4
InvariantRings package
11.4.1
References for the implemented algorithms
11.4.2
InvariantRing Library Demos
Backmatter
A
Additional Reading
B
Additional Topics
B.1
GitHub Desktop
B.2
VS Code Application
B.3
Using the Terminal
C
Definitions and Notes Quick Ref
Colophon
Colophon
Colophon
This book was authored in PreTeXt.